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Numerical investigation of correlation functions for the 
UqSU(2) invariant spin-; Heisenberg chain 

Peter F Arndt and Thomas Heinzel 
Physikalisches Institut. Universitu Bonn, NuEallee 12,53115 Bonn, Germany 

Received 8 March 1995 

AbstracL We consider.the UqSU(2)  invariant spin-; xxz quantum spin chain at the roots 
of unity q = exp(ix/(m i I)), corresponding to different minimal models of conformal field 
theory. We conduct a numerical investigation of the correlation functions of UqSU(2)  scalar 
two-point operators in order to find which operators in the minimal models they correspond to. 
Using graphical representations of the Temperley-Lieb algebra we are able to deal with chains 
of up to 28 sites. Depending on q. the correlation functions show different characteestics and 
finite-size behaviour. For m = 213, which corresponds to the L-Yang edge singularity, we 
find the surface and bulk critical exponent -1j5. Together with the known result in the case 
m = 3 (king model) this indicates that in the continuum limit the tWO-pOint operators involve 
conformal fields of s p i n - s .  For other roo$ of unity q the.&ains are too short to determine 
the surface and bulk uitical exponents. 

1. Introduction 

We consider two-point correlation functions for a class of one-dimensional quantum models 
on a chain of N sites defined in terms of the Hamiltonian [1,2] 

i=l 

Here the ei, i = 1,2, . . . , N - 1. are generators of a Temperley-Lieb algebra T&) defined 
by therelations [3] . - 

(1.24 
(1.26) 
(1.2c) 

In this paper we numerically compute correlation functions of the two-point operators [2] 
that are elements of this algebra. Representing the generators by 

then these two-point operators become UqSU(2) invariant generalizations of the Scalar 
operators u k c r , .  Thus, they &e natural and interesting correlation operators for 
the'Hamiltonian (1.1). Here 0:. U / ,  and U; are Pauli matrices acting on site i. 
In representation (1.3), tums into a UqSU(2) symmetric spin-; xxz Heisenberg 
Hamiltonian. Throughout this paper N is even to ensure that the ground state is unique. 
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The aim of this work is to compute correlation functions of the generalized two-point scalar 
operators and to identify the corresponding bulk and surface critical exponents. For q a 
root of unity, these are only known in the case 4 = exp(irr/4) [Z]. 

If q is real then the model is in a massive phase, and in the limit N + 00 correlation 
functions of local operators can be computed [4]. For the SU(2) symmetric model (q = 1) 
the correlation function of the operator U$$ has been computed numerically using exact 
diagonalization [5-7] or the Bethe ansatz [SI. The same correlation function has been 
calculated analytically in 191 for the periodic Xxz chain (where the UqSU(2) symmetry is 
lost). For this case numerical results can be found in [lo]. 

In this work we consider the Hamiltonian H and the two-point scalar operators gk,, (as 
defined in section 2) in terms of Temperley-Lieb generators. This includes the UqSU(2) 
symmetric case (1.3). Since in our calculations we use the Temperley-Lieb relations only, 
the results apply also to other representations besides this spin-; chain [ll]. We take 
q = exp(in/(m + 1)) as a root of unity. In this case the model is massless and the spectrum 
of H contains the spectrum of Hamiltonians corresponding to conformal field theories with 
central charge [12-141 

P F Amdt and T Heinzel 

Although in representation (1.3) the Hamiltonian is not Hermitian, its spectrum is real [I]. 
The two-point scalar operators are non-local and their continuum limit is not known for 

general m. However, for m = 2 and m = 3 the correlation functions have been derived 
analytically using quotients of the Temperley-Lieb algebra [2,15]. In the former case the 
correlation functions vanish. In the latter case H can be related to the Hamiltonian of the 
Ising model and one finds two different non-vanishing correlation functions which have 
a continuum limit given by correlation functions of operators with conformal dimensions 
(h, L) = (1/2, 0) and (0, l/Z). For m = 5 there is a quotient of Tn(q)which gives a 
three-state Potts model, but the correlation function has not been computed in this case. 
In this paper we present a numerical investigation of the correlation functions in the cases 
m = 3,5,2/3 corresponding to the king model, the three-state Potts model, and the Le+ 
Yang edge singularity respectively. The first case is included to estimate the accuracy 
of the numerical results. For m = 5 we find four different correlation functions { & , I ) ,  
depending on whether k and 1 are odd or even. In the case m = 2/3 there is only one 
correlation function. We attempt to find critical exponents and to identify conformal fields 
that correspond to the continuum limit of the two-point scalar operators. Due to a symmetry 
of the two-point scalar operator and from the known results in the king case, one expects 
conformal fields with spin 2. This can be confirmed in the case m = 2/3. 

For computation of the correlation functions we use graphical representations of TN(q) 
on a path space and on boundary diagram [ I l ,  161. In the representation on boundary 
diagrams, one can easily restrict the configuration space to a space which is related to the 
U,,SU(Z) scalars. A similar restriction is used in [17] to calculate energy gaps for a spin-1 
model. For integer m we also use a path representation space with a dimension that is 
further reduced. Whereas in the spin space approach (1.3), a reduction of the representation 
to the space of U,,SU(2) scalars cannot be achieved easily. For the representation on 
boundary diagrams we can handle chains of up to 24 sites (independent of m). and up to 
28 sites with the path-space representation for m = 5. We extrapolate the data for N + 00 
to correlations in  the semi-infinite geometry, that is we keep one end of the chains fixed. 
From that we try to compute bulk and surface exponents. 
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This paper is organized as follows. In section 2 we define the two-point scalar operator 
and review some results from [2]. The graphical representations of the Temperley-Lieb 
algebra we use are introduced in section 3. In section 4 we describe the calculation of 
ground state and correlation functions. We analyse the results of the computation for the 
cases m = 3,5,2/3 in section 5, numerical data for the semi-infinite chain are listed in an 
appendix. Section 6 contains our conclusions. 

2. Two-point scalar operators 

Two-point UqSU(2) scalar operators have been derived in [2]. 
recursively in terms of Temperley-Lieb generators ek:  

They can be defined 

1 6 k g N - 1  (2. la) 
gk.1 = -qgk.ngn.l - q - ' g n , l g k , n  1 6 k < < 1 6 N (2.lb) 

1 < k < I 6 N. (2.lc) 

Note that these operators are non-local. Interchanging q and q-' one can define another set 
of such operators, but they have the same expectation values. For q =~ 1 and representation 
(1.3) the two-point scalar operator reduces to the SU(2) scalar operator 

-I - I  
gk.k+l = ek - (4 f 4 

g1.k = 4-4gk,l 

g$l=I) = -;ukul. (2.2) 
The operators gk.1 are the quantum group itlvariant analogues of this SU(2) invariant 
expression [2]. 

For q = exp(in/(m + 1)) a root of unity quotients of the Temperley-Lieb algebra can 
be used to relate the general Hamiltonian (1.1) to other quantum spin chains. Specifically, 
for q = exp(in/4) the Temperley-Lieb algebra can be represented such that H becomes the 
Hamiltonian of the Ising model with L = N / 2  sites. With this representation the two-point 
scalar operators can be expressed as products of fermionic operators and their ground-state 
expectation values can be computed explicitly [2]: 
( 8 2 j . d  = 0 (2 .3~)  

(2.3b) 

These expressions reduce in the l i t  L CO to 

(2.3~) 

(2.34 

(2.4~) 

(2.4b) 

We will use these results to estimate errors of the numerical computations. 
For q = exp(ixj6) there exists a different quotient of the Temperley-Lieb algebra 

such that the Hamiltonian H turns into the Hamiltonian of a self-dual three-state Potts 
quantum chain with N/2 sites and free boundary conditions [2]. Using this representation 
the operators gk.1 can be rewritten in terms of two different local parafermionic operators 
which correspond to~even or odd sites of the original quantum chain (1.1) respectively. 
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The Hamiltonian and expressions for the &,I are given explicitly in [2]. The parafermionic 
operators are already known from [18]. However, an analytic solution of the correlation 
functions using the parafermions has ‘not been achieved. 

3. Two representations of the Temperley-Lieb algebra 

For the numerical computations we use two different graphical representations of the 
Temperley-Lieb algebra; we describe them and explain how they can be employed to 
calculate correlation functions. 

3.1. Path representarion 

First, let q be generic. Then one can define an action of the Temperley-Lieb algebra on a 
vector space S with an orthonormal basis of vectors uk that are labelled by N + 1 numbers 
k = (b, kl ,  . . . , kN), subject to the conditions 

ki > 0 
k o = k N = O  
k i = k i _ l f 1 / 2  i = l , _ . . ,  N .  

On this vector space a generator ei of rN(q) can be represented by [ l l ,  161 

eiUk = &_,,k(+, [2ki + 11,1’2[2k,! 4- 11q1’2[2ki+i f 1Iq-’Vx~ 
k:=kj-j&l/Z 

with 

k’ = (ki, . . . , ki-1, k,!, ki+l, .  . . , kN). 

Here we use the definition of the q-number 

Defining 

N / 2 +  j f 1 
N ) - (  

N / 2 -  j 

S has the dimension rr)  [l]. 
The vectors uy  can be interpreted as paths of a Bratteli diagram [l, 161. This diagram 

describes the fusion process of the N spin-; representations of U,SU(2) attached to each site 
of the spin chain. For the Bratteli diagram, ki gives the spin of an irreducible representation 
of U,SU(2) that appears when one decomposes the tensor product of the spin-ki-1 multiplet 
attached to the first i - 1 sites with the doublet of site i. Thus, k N  gives the total spin, and 
the condition kn = 0 selects the UqSU(2)  scalars. In this context the UqSU(2) symmetric 
generators ei (1.3) are found to act on the path space according to (3.2). 

Next we consider the case q = exp(irr/(m + 1)) = exp(ixr/s) with r and s coprime 
integers. Since [sIq = 0 in this case, a basis of the path representation space of TN(q) is 
given by the vectors uk with 

(3.5) 

We denote this vector space as S, c S. This reduction is reflected by the UqSU(2) 
representations for q a root of unity 111. In this case, indecomposable but reducible 

S 
k . < - - l .  
c x 2  
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representations appear in the decomposition of the spin configuration space. Only the 
spin-zero representations with paths in the Bratteli diagram restricted according to (3.5) 
remain as -irreducible representations. Their number, i.e. the dimension of S,, is given by 
U1 

(3.6) 
and, thus, depends on q = exp(ix/(m + 1)). Since the ground state of Hamiltonian (1.1) 
is known to be non-degenerate, we can restrict the representation space for the numerical 
calculation of the correlation functions to S respectively S,. The action of Hamiltonian (1.1) 
and two-point scalar operator (Z.l(a)+c)) on the path space follow from definition (3.2). ~ 

= r(N) - r(N) ( N )  (N) ( N I  ( N )  
0 (m+l)-I + ‘m+l - ‘z(~+I)-I  + rz(m+l,  - ‘3(m+1)-1 f . ’ . 

. 

3.2. Representation on boundary diagrams 

In [Z], a different diagrammatic approach to the calculation of correlation functions (gk,l) 

using the regular representation of the Temperley-Lieb algebra on boundary diagrams [I61 
has been proposed. Boundary diagrams are given by N non-crossing lines that connect N 
upper and N lower points such that each point is connected to one other point. For the 
generators we have the definition 

(3.7) 

The diagrams corresponding to words of the algebra are obtained as follows. For the 
composition of two words the corresponding diagrams are stacked on top of each other and 
the lines ending in the lower points of the first diagram are joined with @e lines ending 
in the corresponding upper points of the second diagram. Any closed line appearing in 
this process is discarded from the diagram and replaced by a factor q + q-’. This reflects 
the Temperley-Lieb relation (1.2a). The other Temperley-Lieb relations (1.26) and (1.2~) 
can easily be verified by drawing~the corresponding diagrams. In this way elements of the 
Temperley-Lieb algebra can be represented faithfully as linear combinations of boundary 
diagrams [16]. 

Let us restrict this regular representation of T N ( ~ )  to the onesided ideal Z generated 
by the word eIe3.. . eN-1. We have 

v u -  U 

e l e s . .  . eN-1 = - . . .  , (3.8) 
n n  n 

The ideal Z is known to represent the space of U,SU(Z) scalars for generic q [16]. Hence 
the ground,state can be represented by a vector in Z. The dimension of Z (as of S) is given 
by rAN). The ideal is realized by all diagrams with disconnected~upper and lower parts 
where the lower part is the one in (3.8) and the upper part has any configuration of N / 2  
non-intersecting lines between the N upper points. 

To calculate expectation. values one needs a scalar product on 2. Define a transposed 
diagram as the upside-down reflected diagram. With this definition the scalar product (SI 1s~) 
of two arbitrary elements SI and of Z is defined [Z] 
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That is, the scalar product is given by the factor that one obtains by removing any loop 
from the diagrams which represent slTs2. 

With the definition of boundary diagrams given above and the scalar product (3.9), the 
expectation values (ulgk,rlu) of the correlation operators can be computed by multiplying 
diagrams that encode the Temperley-Lieb relations. In this way it can easily be seen that 
(ulgk,ilu) is real for any vector U in 2. 

For q a mot of unity, quotients of the Temperley-Lieb algebra have been given 
in [15]. The calculation of the ground-state average of gb,f through evaluation of the 
corresponding diagrams according to (3.9) is independent of the quotients, since it depends 
on the Temperley-Lieb relations (1.2(uHc)) only. In principle the quotients can be used to 
eliminate certain vectors from Z. However, this is not useful for the numerical calculations 
since the e l ina t ion  procedure would have to be carried out after each application of a 
generator to a vector of 2. 

4. Computational method 

Let us describe the numerical calculation of the ground-state expectation values (gw,,) of 
the two-point operators (Z.l(aHc)). We empIoy the representations of section 3 so that 
we do not have to refer to the spin configuration space. In this paper we present the cases 
q = exp(ix/(m + 1)) with m = 3, m = 5, and m = 2/3; the computation can be performed 
analogously for any m. 

First, we generate a basis of the configuration space Z (boundary diagrams) or S, (path 
representation) and the matrix of the Hamilton operator in the respective basis. In general the 
path representation has the advantage of a smaller representation space and an orthonormal 
basis of this space. Note that the matrices for the representation on boundary diagrams are 
not Hermitian (although the eigenvalues of H are real) so that we cannot use the Lanczas 
algorithm. We employ a power method to find the ground state: repeated application of 
the matrix to an appropriate starting vector projects onto the eigenstate with the eigenvalue 
of highest absolute value. This requires about 2000 iterations and gives the eigenenergy 
with a relative error of less than IO-" (lo-'' for small N). We have only applied this 
method in the cases where H is represented by a real matrix. The complex case requires 
more storage capacity and multiplications. For the representation on boundary diagrams the 
matrix realizing H is real and independent of the value of q. With the path representation 
we have a real and symmetric Hamiltonian for integer m. For the non-unitary model given 
by m = 2/3 the path representation gives a complex non-Hermitian Hamiltonian so that we 
use only the boundary diagrams. Note that for m = 2/3 the norm of the ground state is 
negative according to (3.9). 

For m = 3 and m = 5 the ground-state energy was checked against Bethe ansatz 
calculations [13,19]. Our results (obtained up to N = 28) are identical to the results 
listed in 1131. Also, using the formulae given in [12,13], extrapolation from the finite-size 
energies gives the correct values (1.4) of the conformal charge. We find c = OSO(1) for 
m = 3, c = 0.79(1) for m = 5, and c = -4.4(1) for m = 2/3 using the BST extrapolation 
algorithm [20,211. 

We find that the ground state has positive parity, i.e. the properly that the contribution 
of a specific vector ux from S, (a word from 2) to the ground state is the same as the 
conhibution of the vector labelled by k' = ( k ~ ,  kN-1, . . . , kl) (the word with left and right 
ends exchanged). . 

For the computation of the correlation functions we make explicit use of the recursion 
in (Z.l(at(c)). We also use the fact that the expectation values ( u l g ~ ~ l u )  of the operators 
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gk.1 have the symmetry 

(ulgk,llu) ( U I P N + l - l , N + I - k I U )  (4.1) 
for any vector U with positive or negative parity. This can most easily be seen by employing 
the boundary diagrams as a regular representation and using the reality of ( U ~ g k , ~ ~ u ) .  

On a workstation we are able to calculate the correlations for chains of up to N = 24 
sites with the representation using boundary diagrams (independent of q). In this case the 
representation space has dimension rhx) = 208 012. The limit is set by the time required 
for the computation of the scalar products (3.9). For the path-space representation the 
storage capacity limits the calculations. In this case the dimension of the representation 
space depends on m. We can hande N = 40 sites for m = 3 (dims, = = 524288) 
and N = 28 sites for m = 5 (Q!25 = 797 162). 

From the known results in the king case (m = 3) we can determine the numerical errors 
of the computed correlations. The results are exact to 14 digits for N = 14 and to 11 digits 
for N = 28. The two approaches give the same values up to 12 digits (N = 24). 

We use the BST algorithm to extrapolate the correlation functions for finite N to the 
values of the semi-infinite chain (N 4 CO), i.e. we extrapolate the values (gk.1) for different 
N with k and I fixed. With the given precision of our numerical calculation we need at 
least the results of six different chain lengths to obtain reliable results (four digits) with the 
EST extrapolation. This can be seen from the convergence behaviour of the EST algorithm. 
In the case m = 3 we can also check the ex~pola ted  results using (2.4~) and (b) and find 
the same accuracy. Hence, for the semi-infinite chain we can give ( & I )  with k ,  1 < 18 
(m = 5 )  and k, I < 14 (m = 2/3). These values are listed in the appendix. 

5. Results 

Here we discuss the correlation functions, i.e. the ground-state expectation values (gk.0,  for 
the three cases q = exp(ilr/(m -+ 1)) with m = 3,5, 2/3. We consider the extrapolated 
results for the semi-infinite chain. For q on the unit circle the model is massless and, thus, 
we expect long-range order with power-law decay of the correlation functions. In the bulk 
l i t  (without boundary influence) we expect 

with the standard definition of a bulk critical exponent x .  From this and the relation 
gk,! = q4gl.k fork c 1 we find that 

(5.2) 

The continuum limit of the correlation functions of the semi-infinite chain corresponds 
to two-point functions of a conformal field theory in the half-plane with central charge given 
by (1.4). In these minimal models the highest weights are found to be [22] 

(5.3) 

for q and p integers. Comparing (5.2) with (5.3) we are forced to take 

x = h . d m ) .  (5.4) 
This implies that in the continuum limit the correlation function (gk,,)  is realized by two- 
point functions of linear combinations of conformal fields with dimension (h1.3,O) or 
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(0, h1.3). For m = 3 the analytic result is known and one actually finds Majorana fields 
with spin-; [2,23]; nevertheless, we describe the analysis of the numerical results for this 
simple case in order to’ test methods of finding information about the continuum limit of 
the correlation functions. By means of numerical investigations we hy to confirm (5.4) for 
other values of m. 

P F Arndt and T Heinzel 

5.1. m = 3 (Ising model) 

The ground-state averages (gr.1) show a different behaviour for k and 1 odd or even 
respectively. The values (ga.1) are positive for 1 - k odd (with a different behaviour for k 
odd or even) and zero otherwise. Thus, for the continuum limit of the correlation functions 
one has to make a distinction between even and odd sites. From the analytic result for the 
semi-infinite chain (2.4) we find that for both correlation functions 

The bulk l i t  is given by k + CO with I - k fixed. Thus kll + 1 and we have x = l / Z  
from (5.1), corresponding to the Majorana fields. Note that form (5.5) of the correlation 
functions is valid for arbitrary k and-1. The scaling function F describing the influence of 
the boundary depends only on the ratio k l l .  This can be expected of the continuum limit 
from general scaling arguments. In general the surface critical exponent x, is given by 1241 

F(k l1 )  cs (k/ l )xg-x for k l l  + 0. (5.6) 
From (2.4) one has x, = l/2 for the correlation function (gzj-l,zt) and xs = 312 for 

Next, we examine the numerical results extrapolated to the semi-infinite chain. The 
scaling behaviour of F can be seen from figure I@). In this figure we plot the contour lines 
(gk,r)(k - 1)2” for k even and 1 odd. The straight contour lines passing through the origin 
imply a dependence of F on k l l  only. The other correlation function with k odd and 1 even 
shows the same behaviour. Assuming that F is a function of k l l  we can calculate the bulk 
critical exponent x from the numerical data. Using extrapolated values for the functions 
(g2j.a-I) and ( g z j - l , a )  on the semi-infinite chain, we find x = 0.5000(1) in both cases. 
However, the surface exponent x, can only be estimated with an accuracy of about 15% 
from the numerical data (extrapolated from chains of up to 40 sites), because the limit in 
(5.6) cannot be reached with the available values k and 1. 

5.2. m = 5 (three-state Potts model) 

We now consider the case q = exp(iir/6), which corresponds to a three-state Potts model 
as described in section 2. The computed (gk.1) are positive for 1 - k odd and negative 
otherwise. We find that we have to distinguish four non-zero correlation functions. That is, 
as in the case m = 3, the correlation functions described by I(gk.l)l are different fork and 
1 odd or even. The appearance of different functions for odd or even sites can be expected 
from the expressions for the correlation operators in terms of parafermions that arise from 
a quotient representation of the Temperley-Lieb algebra for q = exp(irc/6) (section 2). 

From (5.2) we expect the bulk critical exponent x = 213. In figure 1(b) we give the 
contour lines of F(k ,  1) = g t , f ( l -  k)4/3 for k even and 1 odd. This graph is representative 
of the following. For the values k, 1 < 18 (for which we can determine the correlations of 
the semi-infinite chain) none of the four scaling functions F can be described by a function 
of k l l .  Furthermore, we find that there is no value of x such that F is a function of 1111 

(g2j.w-I). 
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I i 

1 

Figure 1. Contour tines of (gt . l ) ( l -  k)> for the semi- 
infinite chain. (a) shows the data for q = exp(in/4) 
where x = 112, (b) the data for q = exp(irr/6) with 
x = 213, and (c) the data for q = exp(irr3/5) where 
x = -115. For (a) and (b) we use the values fork even 
and 1 odd with k c 1 < 18, for (c) we use all values with 
k < 1 < 14. The spacing between contour lines is 0.025 
(U), 0.05 (b) and 0.01 (e). 

only and we conclude that the range of k, 1 is too small to be in the scaling regime. We 
have also considered linear combinations of the four different correlation functions but were 
unable to find a combination that allows the determination of critical exponents. 

In summary, the critical exponents x and x, cannot be computed in the case m = 5. 
This does not result from inaccuracies of computation and extrapolation of the correlations, 
but from the fact that in this case the chain length is not sufficient to give the continuum 
limit. 

5.3. m = 2/3 (Lee-Yang edge singulrariQ) 

Here q = exp(i~r3/5) and the Hamiltonian H is related to a conformal field theory with 
central charge c = -22/5. This non-unitary minimal model describes the Lee-Yang 
singularity of an king model in an imaginary longitudinal magnetic field [25]. Besides 
the identity it has only one primary operator with conformal dimension h = -1/5. This is 
the dimension we expect as the bulk exponent from equation (5.2). 

The correlations (g,,,,) show a behaviour different from the minimal models m = 3 
and m = 5. We find only one (positive) correlation function independent of k,  I even or 
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odd. In figure I(c) we plot contour lines for all values of k ,  I 6 14. The scaling function 
F ( k ,  I )  = (gk .I ) ( I  - k)-'I5 becomes constant for k >> 1 and I - k >> 1. Thus, we expect 
F ( k / l )  = constant in the continuum limit yielding xs = x. 

On the lattice there is an influence of the boundary, which vanishes quickly with k > 2. 
With the correlation function of the semi-infinite chain one obtains the bulk exponent from 
(5.1), taking k 2 3 and I - k > 4 and assuming a constant F .  In this way we find 
x = -0.20(1) verifying (5.4). 

P F Arndt ond T Heinzel 

6. Conclusion 

We have performed numerical investigations on the U9SU(2)' scalar two-point operator 
for the U9SV(2) symmetric xxz quantum chain at roots of unity. The properties of the 
correlation functions on the chain depend strongly on the value of q as we show for three 
different cases. For q = exp(in/4) one can find the (known) bulk exponent of the two 
correlation functions ( g ~ j . a - 1 )  and (gz j - l .p )  from small chains. For the non-unitary model 
given by q = exp(in3/5) it is possible to extract information ahout the continuum limit 
and critical exponents from chains with up to 24 sites. We have one correlation function 
and find the bulk critical exponent -1/5 confirming x = h1.3 = 3. Thus, the continuum 
limit of the correlations involves operators with spin as in the case q = exp(in/4); this 
fact is already known from an analytical solution [2]. For the surface exponent we obtain 
x, = -l/5 as well. For q = exp(ix/6), where the xxz chain corresponds to a three-state 
Potts model, we find four different correlation functions (gk.1) depending on whether k ,  1 is 
even or odd. In this case it is impossible to find the continuum limit from the lattice data 
(up to 28 sites). Thus, the operators corresponding to the parafermions on the spin chain 
cannot be found in this way. 

We have performed analogous computations for other integers in 2 4. We do not present 
these results here, but wish to remark that lattice effects also dominate the correlations in 
these cases. Thus, in general it remains an open problem to find the conformal operators 
corresponding to the U9SV(2)  invariant correlation operators for the quantum spin chain. 

Table 1. Correlation functions (gx.1) of the semi-infinite chain with k c I 6 14 form = 213 
(Lee-Yang edge singularity). The values given =e exmpolated from chains with up to 24 sifes. 

k 2 3  4 5 6 

1 1.81 2.392 2.788 3.108 3.384 
2 2.026 2.114 3.2 3.592 
3 2.041 2.737 3.23 
4 
5 
6 
7 
8 
9 

1 

2.042 2.139 
2.M3 

7 .  8 9 10 

3.629 3.85 4.054 4.244 
3.928 4.225 4.494 4.14 
3.621 3.968 4.269 4.541 
3.232 3.63 3.971 4.212 
2.739 3,232 3.63 3.911 
2.043 2.139 3.232 3.631 

2.043 2.739 3.232 
2.043 2.739 

2.043 

11 

4.418 
4.965 
4.788 
4.543 
4.272 
3.971 
3.63 
3.232 
2.139 

- 12 - 
4.578 
5.117 
5.015 
4.793 
4.544 
4.212 
3.911 
3.63 
3.232 

13 - 
4346 
5.381 
5.236 
5.024 
4.793 
4.544 
4.212 
3.97 
3.63 

14 

4.879 
5.551 
5.42 
5.224 
5.012 
4.784 
4.544 
4.21 
3.911 

- 

10 
I1  

2.043 2.739 3.232 3.63 
2.043 2.739 3.231 

12 
13 
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Table 2. Correlation functions (gx.0 of the semi-infinite chain with k c 1 < 18 for m = 5 
(three-state Pots model). The values given are extrapolated from chains with up to 28 sites. 

1 

k 2  3 4 5- 6 7 8 9 10 
~~.~ ~~~~ .~~ ~ 

1 0.9907 -0.1764 0.3546 -0.1064 0.2139 70.07631 0.1514 -0.05946 0.1162 
2 0.5136 -0.1458 0,1247 -0.08158 0.06304 -0.05589 0.04036 -0.04212 

0.8489 -0.1647 0.3074 -0.1004 0.1918 -0.0733 0.1397 
0.584 -0.1542 0.156 -0.08962 0.0822- -0.06306 

0.6139 -0.1566 ~ .0.1714 -0.09219 
o.80~1 -0.162 0.287 -0.09839 o.ii98 

0.783 -0.1609 0.2755 
0.6309 -0.1575 

0.7694 

I 
~~ 

k 11 12 13 14 15 ~ 16 17 18 

1 -0.04866 0.09376 -0.04115 0.07825 -0.03561 ~ 0.06696~'-0:03138 0.05834 ~ 

2 0.02907 -0.03358 0.02246 -0.02778 0.01819 -0.02361 0.01522 -0.02047~ . , 

3 -0.05799 0.1096 -0.04806 0.09002 -0.04106 ~ 0.07617 -0.03586 0.06595 
4 0.05365 -0.04847 0.03902 -0.03923 0.03028 -0.03285 0,02456 -0.02819 , 

5 -0.0719 0.1319 -0.05707 0.1044 -0.04748 0.08643 -0.04073 0.07369 
6 0.0925 -0.06561 0.06122 -0.05092 0.0449 -0.04155~ 0.03504 -0.03504. 
7 -0.09741 0.1722 -0.07113 0.1267 -0.05649 0.1006 -0.04706 0.08364 
8 0.1808 -0.09336 0.09908 -0.06684 0.06623 -0.05215 0.04891 -0.04276 
9 -0.1603 0.2679 -0.09687 0.167 -0.07072 0.1,228 -0.05611 0.0977 

10 0.642 -0.158 0.1872 -0.09399 0.1037 -0.06753 0.06984 -0.05287 
11 0.7602 -0.16 0.2626 -0.09654 0.1632 ~ -0.07037 ~0.1199 
I2 0.6499 -0.1583 0.1918 -0.09437 0.1071 -0.06796 
13 0.7534 -0.1598 0.2586 -0.09632 0.1603 
14 0.6557 -0.1585 0.1954 -0.09462 
15 0.7482 -0.1597 0.2555 

17 0.7441 
16 0.6604 -0.1587 ~~ 
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Appendix 

We list the ground-state expectation values (gk.l) of the two-point scalar operators (2.1) 
exhapolated to the semi-infinite chain for the cases q = exp(in3/5) corresponding to 
c = -22/5 (table 1) and q = exp(in/6) corresponding to c = 4/5 (table 2). Estimating 
the e m r  as explained in section 4 these results are reliable up to four digits as given in the 
tables. We do not give the correlations ,in the case q = exp(in/4) which can be calculated 
from (2.4). 
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