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Numerical investigation of correlation functions for the
U,SU(2) invariant spin-1 Heisenberg chain

Peter F Arndt and Thomas Heinzel
Physikalisches Institut, Universitit Bonn, NuBallee 12, 53115 Bonn, Germany

Received 8 March 1995

Abstract. We consider the U;§U/(2) invariant spin-% XXZ quantum spin chain at the roots
of unity ¢ = exp(in/(m + 1)), corresponding to different minimal models of conformal field
theory, We conduct a numerical investigation of the correlation functions of U, SU/(2) scalar
two-point operators in order to find which operators in the minimal models they correspond to.
Using graphical representations of the Temperley—Lieb algebra we are able to deal with chains
of up to 28 sites. Depending on g, the correlation functions show different characteristics and
finite-size behaviour. For m = 2/3, which comesponds to the Lee—Yang edge singularity, we
find the surface and bulk critical exponent —1/5. Together with the ktiown result in the case
m =3 (Ising model} this indicates that in the continyum limit the two-point operators involve
conformal fields of spin-ﬂ—;—}-. For other roots of unity g the chains are too short (o determine

the surface and bulk crifical exponents.

1. Introduction

‘We consider two-point correlation functions for a class of one-dimensional quantum models
on a chain of N sites defined in terms of the Hamiltonian [1, 2]
N=1

H=-3¢. (L1

Herethe g;, i = 1,2,..., N — 1. are generators of a Temperley—-Lieb algebra Tx(g) defined
by the relations 3] -

gie; ={(g+q Ve : : (1.2a)
€18 = ¢; (1.2b)
e = &€ ) (] # i+ 1) (126)

In this paper we numerically compute correlation functions of the two-point operators [2]
that are elements of this algebra. Representing the generators by
4+ -1 q- q—I

I ofot, - 1+ L —oF — o) (13)
then these two-point operators become U,SU(2) invariant generalizations of the scalar
operators ooy,  Thus, they are natural and interesting correlation operators for
_the Hamiltonian (1.1). Here of, o/, and o} are Pauli matrices acting on site i.
In representation (1.3), H tums into a U,SU(2) symmetric spin—% xxZ Heisenberg
Hamiltonian. Throughout this paper N is even to ensure that the ground state is unique.
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The aim of this work is to compute correlation functions of the generalized two-point scalar
operators and to identify the corresponding bulk and surface critical exponents. For g a
root of unity, these are only known in the case g = exp(im/4} [2].

If g is real then the model is in a massive phase, and in the limit N — co correlation
functions of local operators can be computed [4]. For the ST/ (2) symmetric model (g = 1)
the correlation function of the operator oo} has been computed numerically using exact
diagonalization [5-7] or the Bethe ansatz [8]. The same correlation function has been
calculated analytically in [9] for the periodic XXZ chain (where the U,SU(2) symmetry is
lost). For this case numerical results can be found in [10].

In this work we consider the Hamiltonian H and the two-point scalar operators g (as
defined in section 2) in terms of Temperley-Lieb generators. This includes the U,SU{(2)
symmeiric case (1.3). Since in our calculations we use the Temperley—Lieb relations only,
the results apply also to other representations besides this spin~% chain [11]. We take
g = exp(in/(m+-1)) as a root of unity. In this case the model is massless and the spectrum
of A contains the spectrum of Hamiltonians corresponding to conformal field theories with
central charge [12-14]

6
=1 m(n +1) 4
Although in representation (1.3) the Hamiltonian is not Hermitian, its spectrum is real [1].

The two-point scalar operators are non-local and their continuum limit is not known for
general m. However, for m = 2 and m = 3 the correlation functions have been derived
analytically using quotients of the Temperley-Lieb algebra [2, 15]. In the former case the
correlation functions vanish. In the latter case I can be related to the Hamiltonian of the
Ising model and one finds two different non-vanishing correlation functions which have
a continuum limit given by correlation functions of operators with conformal dimensions
h, k) = (1/2,0) and (0, 1/2). For m = 5 there is a quotient of Ty(g)which gives a
three-state Potts model, but the correlation function has not been computed in this case.
In this paper we present a numerical investigation of the cotrelation functions in the cases
m = 3,5,2/3 corresponding to the Ising mode!, the three-state Potts model, and the Lee—
Yang edge singularity respectively. The first case is included to estimate the accuracy
of the numerical results. For m = 5 we find four different correlation functions {gz;),
depending on whether & and ! are odd or even. In the case m = 2/3 there is only one
correlation function. We attempt to find critical exponents and to identify conformal fields
that correspond to the continuum limit of the two-point scalar operators. Due to a symmetry
of the two-point scalar operator and from the known results in the Ising case, one expects
conformal fields with spin ,’:——-_"_} This can be confirmed in the case m = 2/3.

For computation of the correlation functions we use graphical representations of Ty (g)
on a path space and on boundary diagrams [11,16]. In the representation orn boundary
diagrams, one can easily restrict the configuration space to a space which is related to the
U,SU(2) scalars. A similar restriction is used in [17] to calculate energy gaps for a spin-1
model. For integer m we also use a path representation space with a dimension that is
further reduced. Whereas in the spin space approach (1.3), a reduction of the representation
to the space of U,SU(2) scalars cannot be achieved easily. For the representation on
boundary diagrams we can handle chains of up to 24 sites (independent of m), and up to
28 sites with the path-space representation for m == 5. We extrapolate the data for N — o0
to correlations in the semi-infinite geometry, that is we keep one end of the chains fixed.
From that we try to compute bulk and surface exponents.
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This paper is organized as follows. In section 2 we define the two-point scalar operator
and review some results from [2]. The graphical representations of the Temperley—Lieb
algebra we use are introduced in section 3. In section 4 we describe the calculation of
ground state and correlation functions. We analyse the results of the computation for the
cases m = 3, 5,2/3 in section 5, numerical data for the semi-infinite chain are listed in an
appendix. Section 6 confains our conclusions.

2. Two-point scalar operators

Two-point U,SU(2) scalar operators have been derived in [2]. They can be defined
recursively in terms of Temperley-Lieb generators e

Cgrkn = —(@+gH! I<kgSN-1 2.1a)
Sk1 = —q8kngni — 4 gnilin I<k<n<IKN (2.1b)
ge=q"gt 1<k<IgN. . (2.1¢)

Note that these operators are non-local. Interchanging ¢ and g~ one can define another set
of such operators, but they have the same expectation values. For g = 1 and representation
(1.3} the two-point scalar operator reduces to the SU(2) scalar operator

8;541—0 = =200, (2.2)

The operators gx; are the quantum group invariant analogues of this SU(2) invariant
expression [2].

For g = exp(in/(m <+ 1}) a root of unity quotients of the Temperley—Lieb algebra can
be used to relate the general Hamiltonian (1.1} to other quantum spin chains. Specifically,
for g = exp(ir/4) the Temperley—Lieb algebra can be represented such that A becomes the
Hamiltonian of the Ising model with L = N /2 sites. With this representation the two-point
scalar operators can be expressed as products of fermionic operators and their ground-state
expectation values can be computed explicitly [2]:

(g2726) =0 (2.3a)
{g2j-1,2-1} =0 ) (2.3b)
242 &L 2n+1 2n+1 ,
2} = — o ) s ‘ k-1 2.3
{8221} L1 Sm(-TI'ZL_l_lJ)COS( 2L+1( )) (2.3¢)
242 & 2n+1 2n + 1
j— = i - . 2.3
{g2j-1,21) 2L+1§SIH(H2L+1 )GOS( it )) (2.3d)
These expressions reduce in the limit L — co to
V271 1 ' :
(g]cyl) = -Jr-—- (sz— — m) k even, ! odd (2.4(1)
V3igo 1 :
v * ., 1 d, [ even. 2.4b
{8k} - (l — T k) k odd, I even | (2.4b)

We will use these results to estimate errors of the numerical computations.

For ¢ = exp(im/6) there exists a different quotient of the Temperley-Lieb algebra
such that the Hamiltonian H turns into the Hamiltonian of a self-dual three-state Potts
quantum chain with N/2 sites and free boundary conditions [2]. Using this representation
the operators g, can be rewritten in terms of two different local parafermionic operators
which correspond to-even or odd sites of the original quantum chain (1.1) respectively.
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The Hamiltonian and expressions for the g;; are given explicitly in [2]. The parafermionic
operators are already known from [I8]. However, an analytic solution of the correlation
functions using the parafermions has not been achieved.

3. Two representations of the Temperley—Lieb algebra

For the numerical computations we use two different graphical representations of the
Temperley-Lieb algebra; we describe them and explain how they can be employed to
calculate correlation functions.

3.1. Path representation

First, let g be generic. Then one can define an action of the Temperley-Lieb algebra on a
vector space & with an orthonormal basis of vectors v that are labelled by N - I numbers
k = (ky, k1, ..., kn), subject to the conditions

k=20
ko=ky =0 (3.1)
b=k =172 i=1,...,N.

Qn this vector space a generator ¢; of Ty (g) can be represented by [11, 16]

eive =Sy k9. [+ 10,02k + 1) A2 + 1L, e (B2)

k:= l'--l::l'-'ll-(f2
with
K=k ki1, & iy, -5 k). (3.3)
Here we use the definition of the g-number
g% —q~*
1l =22 -
T g—g
Defining
o™ _ N _ N
L _(N/Z—j) (N/2+j+1) 34

S has the dimension I§" [1].

The vectors v can be interpreted as paths of a Bratteli diagram [1, 16]. This diagram
describes the fusion process of the ¥ spin-% representations of U/, SU/(2) attached to each site
of the spin chain. For the Bratiteli diagram, k; gives the spin of an irreducible representation
of U, SU(2) that appears when one decomposes the tensor product of the spin-k;—; multiplet
attached to the first { — 1 sites with the doublet of site {. Thus, ky gives the total spin, and
the condition ky = 0 selects the U, SU(2) scalars. In this context the U, SU(2) symmetric
generators ¢; (1.3) are found to act on the path space according to (3.2).

Next we consider the case g = exp(in/{m 4+ 1)) = exp(imr/s) with r and s coprime
integers. Since [s], = 0 in this case, a basis of the path representation space of Ty{gq) is
given by the vectors v with

b}
ki € 5~ 1. - - R C )|

We denote this vector space as &; C &. This reduction is reflected by the U, SU(2)
representations for ¢ a root of unity {1]. In this case, indecomposable but reducible
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representations appear in the decomposition of the spin configuration space. Only the
spin-zero representations with paths in the Bratteli diagram restricted according to (3.5)
remain as irreducible representations. Their number, i.e. the dimension of &, is given by
(11

ggv )= Pc()N) h 1-‘((ﬁ-);-n—t + an!:-)l - Fg(\:r2+1)-1 + Pz(m-i-l} Fg?rm-u)_l - (3.6
and, thus, depends on g = exp(im/(m + 1)). Since the ground state of Hamiltonian (1.1)
is known to be non-degenerate, we can restrict the represeatation space for the numerical
calculation of the correlation functions to & respectively &,. The action of Hamiltonian (1.1)
and two-point scalar operator (2.1(a)—(c)) on the path space follow from definition (3.2).

3.2. Representation on boundary diagrams

In [2], a different diagrammatic approach to the calculation of correlation functions (g ;)
using the regular representation of the Temperley—Lieb algebra on boundary diagrams [16]
has been proposed. Boundary diagrams are given by M non-crossing lines that connect N
upper and N lower points such that each point is connected to one other pomt For the
generators we have the definition
o/
g = . - 37D
,/‘\ -
- [ | N—i N

The diagrams corresponding to words of the algebra are obtained as follows. For the
composition of two words the corresponding diagrams are stacked on top of each other and
the lines ending in the lower points of the first diagram are joined with the lines ending
in the corresponding upper points of the second diagram. Any closed line appearing in
this process is discarded from the diagram and replaced by a factor ¢ + g~1. This reflects
the Temperley-Lieb relation (1.2a). The other Temperley-Lieb relations (1.25) and (1.2¢)
can easily be verified by drawing the corresponding diagrams. In this way elements of the
Temperley-Lieb algebra can be represented faithfully as linear combinations of boundary
diagrams [16].

Let us restrict this regular representation of Ty (g) to the one-sided ideal Z generated
by the word eres. .. enx—;- We have

E185...8N=1 = - oot . - . (38)
™M ™

The ideal Z is known to represent the space of U,SU(2) scalars for generic g [16]. Hence
the ground state can be represented by a vector in I The dimension of 7 (as of §) is given
by I"{N}. The ideal is realized by all diagrams with disconnected upper and lower parts
where the lower part is the one in (3.8) and the upper part has any configuration of N /2
non-intersecting lines between the N upper points.

To calculate expectation. values one needs a scalar product on Z. Define a transposed
diagram as the upside-down reflected diagram. With this definition the scalar product {s;|s2}
of two arbitrary elements 51 and 55 of 7 is defined [2]

5178 = (532}, S . : g (3.9}
™M M
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That is, the scalar product is given by the factor that one obtains by removing any loop
from the diagrams which represent s;s;.

With the definition of boundary diagrams given above and the scalar product (3.9), the
expectation values {v|gs|v} of the correlation operators can be computed by multiplying
diagrams that encode the Temperley-Lieb relations. In this way it can easily be seen that
{v|gr v} is real for any vector v in T,

For g a root of unity, quotients of the Temperley—Lieb algebra have been given
in [15]. The calculation of the ground-state average of gi; through evaluation of the
corresponding diagrams according to (3.9} is independent of the quotients, since it depends
on the Temperley-Lieb relations (1.2{a}{(c)) only. In principle the quotients ¢an be used to
eliminate certain vectors from Z. However, this is not useful for the numerical calculations
since the elimination procedure would have to be carried out after each application of a
generator to a vector of Z.

4. Computational method

Let us describe the numerical calculation of the ground-state expectation values (g} of
the two-point operators (2.1{a)~{(c)). We employ the representations of section 3 so that
we do not have to refer to the spin configuration space. In this paper we present the cases
g =exp(in/(m+ 1)) with m = 3, m = 5, and m = 2/3; the computation can be performed
analogously for any .

First, we generate a basis of the configuration space T (boundary diagrams) or &, (path
representation) and the matrix of the Hamilton operator in the respective basis. In general the
path representation has the advantage of a smaller representation space and an crthonormal
basis of this space. Note that the matrices for the representation on boundary diagrams are
not Hermitian (although the eigenvatues of H are real) so that we cannot use the Lanczds
algorithm, We employ a power method to find the ground state: repeated application of
the matrix to an appropriate starting vector projects onto the eigenstate with the eigenvalue
of highest absolute value. This requires about 2000 iterations and gives the eigenenergy
with a relative error of less than 10~!' (108 for small N). We have only applied this
method in the cases where H is represented by a real matrix. The complex case requires
more storage capacity and multiplications. For the representation on boundary diagrams the
matrix realizing H is real and independent of the value of g, With the path representation
we have a real and symmetric Hamiltonian for integer m. For the non-unitary model given
by m = 2/3 the path representation gives a complex non-Hermitian Hamiltonian so that we
use only the boundary diagrams. Note that for m = 2/3 the norm of the ground state is
negative according to (3.9).

For m = 3 and m = 5 the ground-state energy was checked against Bethe ansatz
calculations [13,19]. Our results (obtained up to N = 28) are identical to the results
listed in [13]. Also, using the formulae given in [12, 13], extrapolation from the finite-size
energies gives the correct values (1.4) of the conformal charge. We find ¢ = 0.50(1) for
m=73,¢c=0.79(1) for m = 5, and ¢ = —4.4(1) for m = 2/3 using the BST extrapolation
algorithm [20, 21].

We find that the ground state has positive parity, i.e. the property that the contribution
of a specific vector v, from S, (a word from I) to the ground state is the same as the
contribution of the vector tabelled by &' = (ky, ky—1, - .., k1) {the word with left and right
ends exchanged).

For the computation of the correlation functions we make explicit use of the recursion
in (2.1{(a}-(c)). We also use the fact that the expectation values {v|gi:|v) of the operators
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&r.1 have the symmetry

(v(grilv) = (Wignr1-1 wa1—lV) 4.1)

for any vector v with positive or negative parity. This can most easily be seen by employing
the boundary diagrams as a regular representation and using the reality of (vigsjv).

On a workstation we are able to calculate the correlations for chains of up to N = 24
sites with the representation using boundary diagrams {independent of g}. In this case the
representation space has dimension I‘éw == 208 012. The limit is set by the time required
for the computation of the scalar products (3.9). For the path-space representation the
storage capacity limits the calculations. In this case the dimension of the representation
space depends on m. We can handle N = 40 sites for m = 3 (dim&; = 8’2,(:23 = 524 288)
and N = 28 sites for m = 5 (R, =797 162).

From the known results in the Ising case (n = 3) we can determine the numerical errors
of the computed correlations. The results are exact to 14 digits for ¥ = 14 and to 11 digits
for N =28, The two approaches give the same values up to 12 digits (N = 24).

We use the BST algorithm to extrapolate the correlation functions for finite N to the
values of the semi-infinite chain (N — ©0), i.e. we extrapolate the values (g, ;) for different
N with & and [ fixed. With the given precision of our numerical calculation we need at
least the resuits of six different chain lengths to obtain reliable results (four digits) with the
BST extrapolation. This can be seen from the convergence behaviour of the 8ST algorithm.
In the case m = 3 we can also check the extrapolated results using (2.4a) and (&) and find
the same accuracy. Hence, for the semi-infinite chain we can give {g¢,) with &,1 < 18
(m=35)yand k,1 < 14 (m = 2/3). These values are listed in the appendix.

5. Results

Here we discuss the correlation functions, i.e. the ground-state expectation values {g;;}, for
the three cases ¢ = exp(in/(m + 1)) with m = 3,5,2/3. We consider the extrapolated
results for the semi-infinite chain. For ¢ on the unit circle the model is massless and, thus,
we expect long-range order with power-law decay of the correlation functions. In the bulk
limit (without boundary influence) we expect

1 -
(grt) = (5.1)

with the standard definition of a bulk critical exponent x. From this and the relation
gy = g*g for k <! we find that

m—1 -
= ——, X . ‘ . 52
* m-1 : ’ C 52
The continuum limit of the correlation functions of the semi-infinite chain corresponds
to two-point functions of a conformal field theory in the half-plane with central chacge given

by (1.4). In these minimal models the highest weights are found to be [22]
lm+1)p —mgi® — 1

7 Bpg(m) = pom—— (5.3)
for g and p integers. Comparing (5.2) with (5.3) we are forced to take
x= hl‘g(m). (5-4)

This implies that in the continuum limit the correlation function (g} is realized by two-
point functions of linear combinations of conformal fields with dimension (%;3,0) or
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{0, 711 3). For m = 3 the anaiytic resuit is known and one actually finds Majorana fields
with epm- [2,23]; nevertheless, we describe the analysis of the numerical results for this
simple case in order to test methods of finding information about the contintum limit of
the correlation functions. By means of numerical investigations we try to confirm (5.4) for
other values of m.

5.1. m =3 (Ising model)

The ground-state averages (g;) show a different behaviour for & and ! odd or even
respectively. The valves {g; 1} are positive for [ — % odd (with a different behaviour for &
odd or even) and zero otherwise. Thus, for the continuum limit of the correlation functions
one has to make a distinction between even and odd sites. From the analytic result for the
semi-infinite chain (2.4) we find that for both correlation functions -

1
-5 (5.5)
The bulk limit is given by £ — co with [ — k fixed. Thus &/l — 1 and we have x = 1/2
from (5.1), corresponding to the Majorana fields. Note that form (5.5) of the correlation
functions is valid for arbitrary & and {. The scaling function F describing the influence of
the boundary depends only on the ratio /1. This can be expected of the continuum limit
from general scaling arguments. In general the surface critical exponent x; is given by [24]

F(k/D) oc (k/Iy==* for k/1 — 0. (5.6)

From (24) one has x; = 1/2 for the correlation function {ga;_1 ) and x; = 372 for
(g2j,2%-1)-

Next, we examine the numerical resulis extrapolated to the semi-infinite chain. The
scaling behaviour of F can be seen from figure 1{a). In this figure we plot the contour lines
{gr1)(k — D* for k even and ! odd. The straight contour lines passing through the origin
imply a dependence of F on k/! only. The other correlation function with & odd and 7 even
shows the same behaviour. Assuming that F is a function of k/! we can calculate the bulk
critical exponent x from the numerical data, Using extrapolated values for the functions
{g2j26—1) and (g2;_1,2) on the semi-infinite chain, we find x = 0.5000(1) in both cases.
However, the surface exponent x; c¢an only be estimated with an accuracy of about 15%
from the numerical data (extrapolated from chains of up to 40 sites), because the limit in
(5.6) cannot be reached with the available values & and /.

{gri) =

5.2. m = 5 (three-state Potts model}

We now consider the case g = exp(im/6), which corresponds to a three-state Potts model
as described in section 2. The computed {gz,} are positive for ] — £ odd and negative
otherwise. We find that we have to distinguish four non-zero correlation functions. That is,
as in the case m = 3, the correlation functions described by [{gy}] are different for & and
! odd or even. The appearance of different functions for odd or even sites can be expected
from the expressions for the correlation operators in terms of parafermions that arise from
a quotient representation of the Temperley-Lieb algebra for g = exp(in /6) (section 2).
From (5.2) we expect the bulk critical exponent x = 2/3. In figure 1(p} we give the
contour lines of F(%,1) = g,(1 — k)*> for k even and ! odd. This graph is representative
of the following. For the values &, < 18 (for which we can determine the correlations of
the semi-infinite chain) none of the four scaling functions F can be described by a function
of k/I. Furthermore, we find that there is no value of x such that F is a function of /!
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only and we conclude that the range of k, ! is too small to be in the scaling regime. We
have also considered linear combinations of the four different correlation functions but were
unable to find a combination that allows the determination of critical exponents.

In summary, the critical exponents x and x; cannot be computed in the case m = 5.
This does not result from inaccuracies of computation and extrapolation of the correlations,
but from the fact that in this case the chain length is not sufficient to give the continuum
limit. ‘

5.3, m = 2/3 (Lee—Yang edge singularity)

Here ¢ = exp(in3/5) and the Hamiltonian H is related to a conformal field theory with
central charge ¢ = —22/5. This non-unitary minimal model describes the Lee—Yang
singularity of an Ising model in an imaginary longitudinal magnetic field [25]. Besides
the identity it has only one primary operator with conformal dimension b = —1/5. This is
the dimension we expect as the bulk exponent from equation (5.2).

The correlations {g; »} show a behaviour different from the minimal models m = 3
and m = 5. We find only one (positive) correlation function independent of k, [ even or
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odd. In figure 1(c) we plot contour lines for all values of ,! < 14. The scaling function
F(k,1) = (grs}{ — k)~*/° becomes constant for & 3> 1 and  — & 3> 1. Thus, we expect
F(k/1} = constant in the continuum limit yielding x. = x.

On the lattice there is an influence of the boundary, which vanishes quickly with k& > 2.
With the correlation function of the semi-infinite chain one obtains the bulk exponent from
(5.1), taking k¥ 2 3 and { — % > 4 and assuming a constant F. In this way we find
x = —0.20(1) verifying (5.4).

6. Conclusion

We have performed numerical investigations on the I7,SU(2) scalar two-point operator
for the U, SU(2) symmetric XXZ quantum chain at roots of unity. The properties of the
correlation functions on the chain depend strongly on the value of g as we shew for three
different cases. For g = exp(in/4) one can find the (known) bulk exponent of the two
correlation functions {ga;¢-1} and {g2j-1,2¢} from small chains. For the non-unitary model
given by g = exp(iz3/5) it is possible to extract information about the continuum limit
and critical exponents from chains with up to 24 sites. We have one correlation function
and find the bulk critical exponent —1/5 confirming x = 113 = ’:;T_-} Thus, the continuum
Fimit of the correlations involves operators with spin ;3 as in the case g = exp(im/4); this
fact is already known from an analytical solution [2]. For the surface exponent we obtain
x; = —1/5 as well. For ¢ = exp(izr/6), where the Xxz chain corresponds to a three-state
Potts model, we find four different correlation functions (g ;} depending on whetber k, 1 is
even or odd. In this case it is impossible 10 find the continuum Iimit from the latiice data
(up to 28 sites). Thus, the operators corresponding to the parafermions on the spin chain
cannot be found in this way.

We have performed analogous computations for other integers m 2 4. We do not present
these results here, but wish to remark that lattice effects also dominate the correlations in
these cases. Thus, in general it remains an open problem to find the conformal operators

corresponding to the U, SU(2) invariant correlation operators for the quantum spin chain.

Table 1. Correlation functions (gi ;) of the semi-infinite chain with & < ! < 14 for m = 2/3
(Lee-Yang edge singularity). The values given are extrapolated from chains with up to 24 sites.

I
2 3 4 ) 6 7. 8 9 10 1 12 13 14

k
1 1,81 2302 2788 3108 3.384 3629 385 4054 4244 4418 4578 4746 4879
2 2026 2714 32 3.592 3928 4225 4494 474 4965 5177 5381 5551
3 2.041 2737 323 3627 3968 4269 4541 4788 5.015 5236 542
4 2,042 2739 3232 363 3971 4292 4543 4793 5024 5224
3 2043 2739 3232 363 3971 4272 4544 47393 5012
6 2.043 273% 3232 3.631 3971 4272 454 4784
7 2.043 2739 3232 363 3971 4272 4544
8 2043 2739 3232 363 397 427
9 2.043 2739 3232 363 3971
10 2043 2739 3232 363
11 2.043 2.739 3.231
12 2.043 2734

13 2,043
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Table 2. Cormelation functions (gg s} of the semi-infinite chain with k </ £ 18 form = 5
- {three-state Potts model). The values given are extrapolated from chains with up to 28 sites.

!

ko2 3 4 5 6 7 8 9 10

1 09907 —01764 03546 -0.1064 02139 —0.07631 01514 -0.05946 0.1162

2 05136 —0.1458  0.1247 —0.08158 006304 —0.0558% 0.04036 —0.04212

3 0.8489 —0.1647 03074 —0.1004  0.1918 —0.0733 01397

4 0584 01542 0156 -0.08962 00822 —0.06306

5 08051 —0.162 0287 —0.0983% 0.1798

6 06139 ~0.1566 . 01714 —0.09219

7 0783  —0.1609  0.2755

8 06309 ~0.1575

9 0.7694
!

Eonu 12 13 14 15 16 17 13

1 —0.04866 0.00376 —004115 007825 —0.03561 0.06696 —0.03138  0.05834 i

2 0.02907 —0.03358 0.02246 —0.02778 001819 —0.02361 0.01522 —0.02047

3 —0.05799 0.109 —0.04806 0.09002 -004106 0.07617 ~0.03586 0.06595

4 005365 —0.04847 003902 —0.03923 003028 -0.03285 002456 —0.02819

5 —00719 01319 —005707 0.1044 —0.04748 008643 ~004073 (.07369

6 00925 -~006561 0.06122 —0.05092 00449 —0.04155 003504 —0.03504

7 —009741 01722 -007113 01267 -0.0364% 01006 -0.04706 0.08364

8 01808 009336 009908 —0.06684 006623 —0.05215 0.04891 —0.04276

9 -0.1603 02679 —0.09687 0.167 ~007072 0.1228 ~0.05611 0.0977

10 0642 0158 0.1872 —0.09399 01037 —0.06753 0.06984 —0.05287

11 07602 —0.16 0.2626 —009654 0.1632 -0.07037 0.1199

12 0.6499 —0.1583 01918 —0.09457 01071 —0.06796

13 07534 —0.1598 0258 -0.09632 0.1603

14 06557 —0.1585  0.1954 —0.09462

15 07482 —0.1597  0.2555

16 0.6604 —0.1587 i

17 0.7441
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Appendix

We list the ground-state expectation values (gi;) of the two-point scalar operators (2.1)
extrapolated to the semi-infinite chain for the cases g = exp(in3/5) corresponding to
¢ = —22/5 (table 1) and g = exp{in/6) corresponding to ¢ = 4/5 (table 2). Estimating
the error as explained in section 4 these results are reliable up to four digits as given in the
tables. We do not give the correlations in the case g = exp(imw/4) which can be calculated
from (2.4).
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